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ABSTRACT: Tests were conducted on a 1:36 scale model of a portion of the Guadalupe River. The 
study was designed to investigate the design of a control weir located at the upstream end of a bypass 
channel. The bypass channel was designed to pass excess flow and prevent flooding for river flows up to 
a 100-year event. The original weir design was modified to achieve desired flow distribution and control. 
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Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not 
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1     Introduction 

Prototype 

The project location is on the Guadalupe River in the vicinity of the Willow 
Glen community in San Jose, CA. The reach being studied is 1,600 ft' long and 
extends from 7,100 ft upstream of the Southern Pacific Raikoad crossing to 
about 700 ft upstream of the Willow Glen Way bridge. The proposed flood- 
control project consists of the natural channel, a diversion (bypass) channel, for 
flood flow and a control structure (weir). The project is proposed and designed 
by the Santa Clara Valley Water District. A vicinity map is included as Figure 1. 

Purpose of Model Study 

The purpose of the model study was to investigate the original weir design 
and to document the water-surface elevations along the natural and bypass 
channels for several river flows. The San Francisco District provided the weir 
design, along with its location and orientation. The intent of the weir design was 
to restrict flows up to 1,500 cfs to the natural channel and to provide a flow 
distribution of 5,000 cfs in the natural channel and 9,600 cfs in the bypass 
channel during the 14,600-cfs, 100-year event. If the original weir design failed 
to produce desired results, modification details would be provided to the San 
Francisco District for review prior to its implementation in the model. 

Additional investigations were to measure channel velocities in the vicinity 
of the weir and the Willow Glen Way bridge, and to identify areas that were 
likely to experience sediment deposition. These two investigations would provide 
information for bank and channel protection and would indicate areas that could 
require significant maintenance. 

' Units of measurement in this report are shown in non-SI units. A table of factors for 
converting non-SI to SI units of measurement is presented on page vii. 
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2    Model 

Description 

The 1:30 scale model reproduced the weir and the natural and bypass 
channels beginning at sta 802+00 and extending to sta 786+00 at the downstream 
extent. The model scale and limits were determined to provide an accurate 
representation of the flow characteristics necessary to investigate the weir 
performance. Figure 2 shows the model limits and stationing used in reporting 
data. 

In this model, flow velocities were measured with a pitot tube and discharges 
were measured with a sharp-crested weir. The limitation of the pitot tube (at this 
scale) was that velocities of a magnitude less than 2 fps could not be measured. 
This was not considered a problem in this study because the velocities at which 
the channel needed protection, as indicated by San Francisco District personnel, 
were on the order of 20+ ^s. 

The model discharge was set by measuring the head over a sharp-crested 
weir (Figure 3). The head versus discharge was calculated using the method 
described in King and Brater (1976). This approach was questioned during a 
mid-study review meeting. As a result, a member of the independent technical 
review team reviewed the discharge calculations. The discharges calculated from 
the sharp-crested weirs (one for the natural channel and one for the bypass 
channel) were determined to be within 5 percent when using calculation 
procedures from the Water measurement manual (U.S. Department of the Interior 
1984), Rouse Engineering Hydraulics (Rouse 1946), and The Handbook of 
hydraulics (King and Brater 1976) (these calculations are provided in 
Appendix A). These discharge measurements were within a 10-percent margin of 
error when scaled to prototype quantities. 

Water-surface elevations were measured at the center of the channel on 100- 
ft intervals. These measurements were made using piezometer taps in the model 
and point gages over a stilling well for each location. The stilling well dampened 
the high-frequency changes in water-surface elevation. These measurements were 
considered average water-surface elevations in subcritical areas of the model. 
The measurements were average, center of channel water-surface elevations for 
areas that were supercritical (near the Willow Glen Way bridge and near the 
control weir at the upstream end of the bypass channel). 
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Figure 3.    Scliematic of tailgate and weir 

Model Adjustments 

To insure the model provided realistic information, the investigation was set 
up to document flow conditions for two chaimel roughnesses: a design roughness 
and a new channel roughness. These two roughnesses would represent a chaimel 
condition some years in the future and a channel condition shortly after 
construction, respectively. The design roughness was considered to provide 
conservative water-surface elevations and flow distributions and was therefore 
used to evaluate the performance and necessary design changes for the weir. The 
new chaimel roughness was investigated to demonstrate the sensitivity of the 
weir to channel roughness and to document conservative velocities for use in 
designing channel protection. 

The San Francisco District provided water-surface profiles representing the 
two channel roughnesses. They were calculated using the HECRAS numerical 
code. These water-surface profiles were considered to be boundary conditions 
and the true prototj^je response would lie in between these conditions. 

Table 1 shows the Manning's n value represented by these boundary 
roughnesses. 

Table 1 
Channel Manning's n Values 

Natural Channel Bypass Channel 

Design Roughness 0.050 0.033 

New Channel Roughness 0.040 0.028 

The model roughness was initially set for the design roughness (n = 0.050 in 
the natural channel and n = 0.033 in die bypass chaimel). To achieve the desired 
roughness, the model discharge was set to 1,500 cfs (lowest event in the study) 
and the tailwater (from the San Francisco District HECRAS study corresponding 
to the design roughness and 1,500 cfs discharge) was set (Figure 3). Starting at 
the downstream end of the channels, roughness (expanded metal) was added to 
the wetted portion of the channel. The tj^e of the expanded metal was changed 
until the water surface matched the San Francisco District water surface. Once 
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the 1,500-cfs event roughness was achieved, the model discharge was set to 
14,600 cfs (100-year event) and the tail water (from the San Francisco District 
HECRAS study corresponding to the design roughness and 14,600 cfs discharge) 
was set. With the higher flow, the upper portion of the wetted channel required 
roughness adjustment. Wire mesh was used to provide enough roughness to the 
channel to match the water surfaces. The new channel roughness was set in the 
same manner. 

Similitude 

The accepted equations of hydraulic similitude, based on the Froudian 
criteria, were used to express the mathematical relations between the dimensions 
and hydraulic quantities of the model and the prototype. A model scale was 
selected that would provide a model Reynolds number high enough to overcome 
viscous forces in the model. The general relations expressed in terms of the 
model's scale or length ratio, Lr, are expressed in Table 2. 

Table 2                                                                                                    i 
Scale Relations                                                                                      | 
Dimension Ratio Scale Relation 

Length U 1:30 

Area ^ = \J 1:900 

Velocity V, = L;° 1:5.477 

Discharge Qr=U='= 1:4929 

Time T. = L;° 1:5.477 

Force F, = U' 1:27,000 

Frequency fr=1/U^° 1:0.183 

Measurements of each of the dimensions or variables can be transferred 
qualitatively from model to prototype equivalents by means of the scale relations 
in Table 2. All model data are presented in terms of prototype equivalents. 
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3    Experiments 

Design Roughness 

Flow distribution 

The weir had to produce two design distributions. Up to 1,500 cfs of all the 
flow was to remain in the natural channel with no bypass flow. For the 100-year 
event, 5,000 cfs was to flow in the natural channel and 9,600 cfs in the bypass 
channel. To meet the first requirement of 1,500 cfs in the natural channel prior to 
utilizing the bypass, the original weir (Figure 4; Photos 1 and 2) had to be 
modified by raising the top elevation by 1.25 ft. The second requirement was 
achieved by reducing the weir length to 128 ft (Figure 5). An alternative weir 
representing these dimensions and incorporating more aesthetic features was 
installed in the model (Figure 6; Photos 3-5). This weir was constructed of 
acrylic plastic and became the final recommended weir design based upon model 
test results. 

After the weir dimensions had been modified to provide desirable flow 
distributions at the two target discharges (1.2-year event and the 100-year event), 
flow distributions were measured for intermediate events as shown in Table 3. 
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Photo 1.     Original weir looking upstream 

Photo 2.     Original weir looking downstream 
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Photo 3.     Final weir lool<ing upstream 

Plioto 4.     Final weir looking downstream from right bank 
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Photo 5.    Final weir lool<ing downstream from left bank 

Table 3 
Flow Distributions for Design Roughness 

Event 
Discharge, 
cfs 

Natural Channel Discharge, 
cfs 

Bypass Channel Discharge, 
cfs 

1.2-year 1,500 1,500 0 

10-year 7,100 3,350 3,750 

20-year 9,000 3,800 5,200 

100-year 14,600 5,000 9,600 

Tailwater sensitivity 

The sensitivity of the flow distributions to tailwater elevation was determined 
for the discharge and tailwater elevation adjustment values shown in Table 4. 
The tailwater elevation in each channel (natural and bypass) was increased or 
decreased simultaneously by the amoimt indicated in the table. The table also 
indicates the flow distribution changes for the associated change in tailwater 
elevation. With the exception of the 1,500-cfs flow, higher tailwater elevations 
caused more flow to enter the bypass channel. 
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Table 4 
Resulting Flow Dis tribution for Design Roughness 

Event 
Discharge, 
cfs 

Natural Channel 
Discharge, cfs 

Bypass Channel 
Discharge, cfs Tallwater 

-1.0-n 1.2-year 1,500 1,500 0 

1,500 0 Design 

1,500 0 +1.0-ft 

1,300 200 +2.0-ft 

10-year 7,100 3,450 3,650 -1.0-ft 

3,350 3,750 Design 

3,250 3,850 +i.o-n 
2,750 4,350 +2.0-ft 

20-year 9,000 3,900 5,100 -1.0-11 

3,800 5,200 Design 

3,450 5,550 +1.0-ft 

2,950 6,050 +2.o-n 
100-year 14,600 5,000 9,600 -1.0-tt 

5,000 9,600 Design 

5,000 9,600 +i.o-n 
4,600 10,000 +2.o-n 

Water-surface profiles 
Water-surface profiles were documented for the four events with four 

tailwater elevations. These data are presented in Table 5 and drawings in 
Appendix B. These values are based on point measurements in the center of the 
channel. In subcritical flow areas of the model, they are considered to be average 
water-surface elevations. 

Table 5 
Water-Surface Elevations for Design Roughness 

station 

Natural Channel Water-Surface Elevation, NGVD Bypass Channel Water-surface Elevation, NGVD 

Event Event 

1.2-year 10-year 20-year 100-year 1.2-year 10-year 20-year 100-year 

801+00 113.16 117.90 119.28 122.10 

[L 
o 
z 

800+00 113.19 118.14 119.43 122.07 

799+00 113.04 117.96 119.16 121.65 

798+00 112.68 117.57 118.89 121.56 

797+00 111.90 116.49 117.78 120.36 

796+00 110.51 112.47 113.07 115.17 

795+00 110.43 112.47 112.86 114.90 

794+00 110.34 113.28 113.58 115.44 

793+00 110.16 113.19 113.94 115.80 109.50 111.12 114.99 

792+00 109.59 112.86 113.88 116.28 109.53 111.18 115.05 

791+00 109.08 112.05 113.22 115.62 109.26 112.65 114.63 

790+00 109.14 111.99 113.10 115.59 109.02 110.52 114.36 

789+00 108.84 111.51 112.68 115.20 108.96 110.49 114.18 

788+00 108.55 111.24 112.50 115.17 109.05 110.58 114.39 
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Sediment impact 
Sediment was introduced in the model to illustrate areas of likely deposition. 

The magnitude (quantity) of this deposition is not relative to prototype 
expectations. The procedure used to introduce the sediment was to set the 
discharge to the 100-year event (14,600 cfs) and deposit 5,000 cu yd of material 
in 2 hr, let the river flow for 30 min, deposit another 5,000 cu yd at the same rate 
and then let the river flow for another 30 min. The flow was shut off and the 
sediment deposits were dusted with cement to allow investigation of sediment 
effects with several flow conditions. The procedure (as described) and material 
(sand that simulates about 0.25 in. gravel in the prototype) was the same as that 
used in Hite (1998). Figure 7 is a plan view of the model showing areas of 
sediment deposition. 

Figure 7.     Sediment deposition design roughness 

The flow distributions for the design roughness with and without sediment 
deposition are indicated in Table 6. 

Table 6 
Flow Distribution for Design Roughness with and without 
Sediment 

Event 
Total 
Discharge, cfs 

Discharge Without Sediment 
Deposits 

Discharge With Sediment 
Deposits 

Natural 
Channel 

Bypass 
Channel 

Natural 
Channel 

Bypass 
Channel 

1.2-year 1,500 1,500 0 1,200 300 

10-year 7,100 3,350 3,750 3,200 3,900 

20-year 9,000 3,800 5,200 3,750 5,250 

100-year 14,600 5,000 9,600 5,800 8,800 

The water-surface elevations for the design roughness with sediment 
deposition are indicated in Table 7. 
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Table 7 
Water-Surface Elevations for Design Roughness with Sediment Deposition 

station 

Natural Channel Water-Surfece Elevation, NGVD Bypass Channel Water-Surface Elevation, NGVD     || 

Event Event                                       1 

1.2-year 10-year 20-year 100-year 1.2-year 10-year 20-year 100-year 

801+00 115.29 119.25 120.12 123.09 

[I 
o 
z 

800+00 115.32 118.74 119.67 122.07 

799+00 115.20 118.35 119.10 121.26 

798+00 113.55 116.64 118.32 121.05 

797+00 111.69 115.47 117.16 120.63 

796+00 111.45 113.07 113.58 115.44 

795+00 111.06 112.92 113.28 114.87 

794+00 110.94 113.37 113.97 115.65 

793+00 110.91 113.94 114.66 116.13 111.60 112.68 114.45 

792+00 109.77 112.41 113.94 116.22 110.04 110.91 114.51 

791+00 109.56 112.74 113.79 115.85 108.48 110.55 113.94 

790+00 108.48 111.09 113.13 115.77 108.57 110.46 113.88 

789+00 108.72 111.72 112.89 115.05 109.02 110.43 114.30 

788+00 108.57 111.24 112.50 115.17 109.02 110.58 114.45 

The differences in water-surface elevation for the design roughness with and 
without sediment deposition are indicated in Table 8. 

Table 8 
Water-Surface Elevations Differences for Design Roughness with Sediment Added 

station 

Natural Channel, ft Bypass Channel, ft 

Event Event 

1.2-year 10-year 20-year 100-year 1.2-year 10-year 20-year 100-year 

801+00 2.13 1.35 0.84 0.99 

K 
o 
2 

800+00 2.13 0.60 0.24 0.00 

799+00 2.16 0.39 -0.06 -0.39 

798+00 0.87 -0.93 -0.57 -0.51 

797+00 -0.21 -1.02 -0.62 0.27 

796+00 0.94 0.60 0.51 0.27 

795+00 0.63 0.45 0.42 -0.03 

794+00 0.60 0.09 0.39 0.21 

793+00 0.75 0.75 0.72 0.33 2.10 1.56 -0.54 

792+00 0.18 -0.45 0.06 -0.06 0.51 -0.27 -0.54 

791+00 0.48 0.69 0.57 0.23 -0.78 -2.1 -0.69 

790+00 -0.66 -0.90 0.03 0.18 -0.45 -0.06 -0.48 

789+00 -0.12 0.21 0.21 -0.15 0.06 -0.06 0.12 

788+00 0.02 0.00 0.00 0.00 -0.03 0.00 0.06 
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New Channel Roughness 

Flow distribution 
The flow distributions for the new channel roughness were recorded to 

document the distributions associated with a lower water surface produced by the 
new channel Manning coefficient (Table 1). The resulting distributions are 
shown in Table 9. Less flow was passed to the bypass channel for the new 
channel roughness condition. 

Table 9 
Flow Distributions for New Channel Roughness 

Event 
Discharge, 
cfs 

Natural Channel Discharge, 
cfs 

Bypass Channel Discharge, 
cfs 

1.2-year 1,500 1,500 0 

10-year 7,100 3,600 3,500 

20-year 9,000 4,100 4,900 

100-year 14,600 5,700 8,900 

Tallwater sensitivity 
Flow distributions were documented for several tailwater elevations to 

determine the weir efficiency with respect to changes in tailwater elevation. The 
tailwater elevation in each channel (natural and bypass) was increased or 
decreased simultaneously by the amount indicated in the table. The resulting 
distributions are shown in Table 10. 

Table 10 
Flow Distribution for New Channel Roughness 

Event 
Discharge, 
cfs 

Natural Channel 
Discharge, cfs 

Bypass Channel 
Discharge, cfs Tallwater 

-1.0-fl 1.2-year 1,500 1,500 0 

1,500 0 Design 

1,500 0 +1.0-ft 

1,400 100 +2.0-ft 

10-year 7,100 3,600 3,500 -1.0-fl 

3,600 3,500 Design 

3,450 3,650 +1.0-ft 

3,300 3,800 +2.0-ft 

20-year 9,000 4,150 4,850 -1.0-fl 

4,100 4,900 Design 

4,000 5,000 +1.0-fl 

3,650 5,350 +2.0-fl 

100-year 

__ 

14,600 5,700 8,900 -1.0-n 

5,700 8,900 Design 

5,800 8,800 +1.0-ft 

6,000 8,600 +2.0-11 
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Water-surface profiles 

Water-surface profiles were documented for the four flow events with four 
tailwater elevations. These data are presented in Table 11 and drawings in 
Appendix C. 

Table 11 
Water-Surface Elevations for New Channel Roui jhness 

station 

Natural Channel Water-Surface Elevation, NGVD Bypass Channel Water-Surface Elevation, NGVD     | 

Event Event 

1.2-year 10-year 20-year 100-year 1.2-year 10-year 20-year 100-year 

801+00 112.92 117.90 119.22 122.34 

iZ 

800+00 113.04 118.23 119.49 122.40 

799+00 112.86 117.90 119.23 121.98 

798+00 112.50 117.60 119.01 121.74 

797+00 111.66 116.49 117.78 120.66 

796+00 110.22 112.47 112.92 115.11 

795+00 110.01 112.53 112.74 114.48 

794+00 109.98 112.98 113.52 115.02 

793+00 109.89 113.28 113.85 115.38 109.11 110.64 114.42 

792+00 109.14 112.56 113.85 115.95 109.08 110.73 114.75 

791+00 108.84 111.78 112.71 114.90 108.93 110.46 114.21 

790+00 108.69 111.66 112.74 114.93 108.57 110.07 113.79 

789+00 108.42 111.18 112.02 114.21 108.60 109.98 113.76 

788+00 108.12 110.61 111.69 114.06 108.60 110.16 113.94 

Flow velocities 

Velocities were higher for the new channel roughness condition. Since scour 
potential is based on velocity, this condition was documented. Flow velocities 
were measured in the vicinity of the weir and bridge pier to indicate the erosion 
potential of the channel. Velocities were also measured at the upstream and 
downstream extent of the model. Velocity measurement locations are shown in 
Figure 8. 

Velocity data are shown in Plates 1 through 16. 
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Figure 8.    Velocity measurement locations 

Sediment impact 

Sediment was again introduced in the model to illustrate areas of likely 
deposition for the new channel roughness. The magnitude (quantity) of this 
deposition is not relative to prototype expectations. The procedure and material 
were the same as that used for the design roughness configuration. Figure 9 is a 
plan view of the model showing areas of sediment deposition. 

Figure 9.     Sediment deposition new channel roughness 

The flow distributions for the new channel roughness with and without 
sediment deposition are indicated in Table 12. 

Table 12 
Flow Distribution for New Channel Roughness with and without 
Sediment 

Event 
Total 
Discharge, cfs 

Discharge Without Sediment 
Deposits 

Discharge With Sediment    | 
Deposits                 n 

Natural 
Channel 

Bypass 
Channel 

Natural 
Channel 

Bypass 
Channel 

1.2 year 1,500 1,500 0 1,400 100 
10 year 7,100 3,600 3,500 3,450 3,650 
20 year 9,000 4,100 4,900 4,050 4,950 
100 year 14,600 5,700 8,900 5,900 8,700 

Chapter 3     Experiments 19 



4    Discussion and Summary 
of Results 

Flow Distribution 

The flow distributions associated with the final weir design (Figure 6) met 
the initial requirements set by the San Francisco District. This is based on results 
for the channel representing the design roughness. The model results indicate a 
maximimi of 1,500-cfs natural channel flow before the bypass channel is utilized. 
The flow distribution for the 100-year event is 5,000 cfs in the natural channel 
and 9,600 cfs in the bypass channel. These two distributions are indicative of a 
weir design that satisfies the original design requirements. 

Tailwater Sensitivity 

Flow distributions were recorded for each event with changes in tailwater 
elevation. These elevations were: the design; design -1.0ft; design + 1.0 ft; and 
design + 2.0 ft. While there were some changes in distribution resulting from 
changes in tailwater elevation, they are considered to be small variations. The 
maximum distribution variation was 600 cfs for the 10-year event with the design 
roughness and 450 cfs for the 20-year event with the new channel roughness. 
This small change in distribution with respect to tailwater change was attributed 
to the weir's location. It is located at the downstream extent of a supercritical 
zone near the Willow Glenn Way bridge. The water-surface elevation in a region 
of supercritical flow is not controlled by tailwater, and therefore is not responsive 
to these tailwater elevation changes. 

The left end of the weir (end closest to the natural channel) is near a jump 
area (transitioning from supercritical to subcritical flow) in the natural channel. 
This affected area of the weir is responsible for the small changes in distribution. 
If the weir were located entirely in the supercritical flow, no changes in 
distribution would be expected due to tailwater changes unless the tailwater 
changes were large enough to change the flow regime at the weir. 
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Water-Surface Profiles 

The water-surface elevation was measured for each event with the four- 
tailwater elevation previously described and with the two different channel 
roughnesses. The changes were significant, but the river discharge was contained 
within the channels. The only exception was for the 100-year event with the 
design + 2.0-ft tailwater elevation. During this event the natural channel 
overtopped on the right bank and spilled into the bypass channel. No overtopping 
occurred on the landside of either channel, thus indicating proper design of 
channel dimensions to prevent overtopping. 

Flow Velocities 

Flow velocities were considered to be most critical or at their highest with 
the new channel (smoothest) roughness (Table 1). Therefore, channel velocities 
were measured in the supercritical zone near the bridge pier and the weir for the 
new channel roughness configuration. The highest observed velocities were for 
the 100-year event. These velocities reached as high as 20-Q)s near the weir and 
26.5-§)S under the bridge. At these velocities, channel protection would be 
required to prevent channel erosion. 

Sediment Impact 

The sediment used in the model study was not a representation of the 
prototype sediment material. The model material was much larger and therefore 
could not be used to indicate quantities of deposition. This portion of the study is 
primarily for the demonstration of areas in the channels where sediment will 
hkely deposit. The areas of deposition are shown in Figures 7 and 9. 

The flow distributions with and without sediment tabulated in Table 6 show 
that the changes in flow distribution for the 100-year event is insignificant 
(approximately 0.5 percent of the total flow). 

Willow Glenn Way Bridge 

The Willow Glenn Way bridge pier (single pier) alignment had a significant 
impact on the distribution of flow between the two channels. The pier design and 
location was provided by the San Francisco District. The pier orientation was 
determined in the model. It was oriented to be streamlined in the flow, thus 
reducing its influence in the flow field. This orientation provided the least impact 
on flow distributions. 

The pier was moved across the channel up to 10 ft toward the right bank and 
up to 10 ft toward the left bank. These location adjustments did not impact the 
flow distributions as long as the pier orientation (intersect angle with the weir) 
was not changed. Changes in the pier orientation will direct flow either into or 
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away from the weir thus changing its performance. Figure 10 shows the bridge 
pier as located in the model. 

Figure 10. Upper Guadalupe bridge pier center-line location Willow Glen Way 

To determine the bridge freeboard, the model bridge pier was marked to 
show the lowest soffit elevation of 123.27.' Freeboard measurements were 
measured with and without debris buildup on the pier. Model debris consisted of 
a packing material commonly known as rubberized hair. The rubberized hair was 
sized to simulate approximately 8-ft wide debris buildup. The freeboard was 
measured from the mark at el 123.27 to the water surface. The data are shown in 
Table 13. As mentioned in the report, the bridge pier is located in a supercritical 
flow regime. The debris buildup prevented "ride-up" of flow on the pier and 
increased the freeboard. 

Table 13 
Willow Glen Way Bridge Freeboard, 100-Year Event, with and 
without Debris on Pier 
Tailwater Freeboard without Debris, It Freeboard with Debris, ft 

-1.0' 2.1 7.5 

Design 2.1 6.9 

+1.0' 2.1 6.9 

+2.0' 2.1 6.9 

All elevations (el) cited herein are in feet as referred to in the National Geodetic Vertical 
Datum (NGVD) of 1929. To convert feet to meters, multiply by 0.3048. 
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Conclusions and 
Recommendations 

Weir Design 

The final weir design (Figure 6) will provide flow distributions that meet the 
original design requirements. The design requirements, as stated by the San 
Francisco District, were to pass a 1.2-year event (1,500 cfs) in the natural channel 
and to distribute the 100-year event (14,600 cfs) with 5,000 cfs in the natural 
chaimel and 4,600 cfs in the b5^ass channel. 

This weir design and location does not appear to be sensitive to tailwater 
elevation changes ranging from the design tailwater elevation -1.0 ft to the 
design tailwater elevation +2.0 ft. Nor does this weir configuration appear 
sensitive to channel sedimentation (as conducted in the study). 

The weir performance is sensitive to the bridge pier (Willow Glen Way 
bridge) alignment. However, this study indicates that the pier location can be 
moved plus or minus 10 ft (left or right) without affecting the weir performance. 

Any deviations in weir or bridge pier design should be model studied to 
insure the weir performance is not changed. 

Flow Velocities 

The velocities in the natural channel near the bridge and in both chaimels 
near the weir are in excess of 20 fps. If the San Francisco District determines 
these velocities will erode the channel material, steps should be taken to stabilize 
the channel. At these high velocities, large diameter riprap or a concrete line 
channel may be necessary. 

If the channel is not stabilized, grade control structures should be used to 
maintain the channel geometry. If the channel geometry is allowed to change, the 
flow regime (supercritical and subcritical flow) will change and require 
additional model evaluation to ensure proper weir performance. 
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TK Mr. Randy Oswalt 

Franc Dwayne Fuller 

Date: 3/18^2 

Rac Upper Guadalupe Model Study, Weir CoefficJent for Model Discharge 

Randy, 

Ttils memo is intended to discuss the method used to set the discharge In the subject model. We are 
using two tiorizontal sharp cresf weirs, one each downstream of the natural channel and the byp>ass 
channel. I used ttie discharge coefficient, Ce = 3.2, and assumed the H/P was dose enough to 0 to t)e 
negligible. TTiese two values were used to set the weir sizes (see Figure 1) and used to measure the 
discharges in the model. 

As a result of Dr. Wang questioning my selection of a discharge coefficient during our meeting and 
model demonstration earlier this week, I took another look at the discharge coefficient and H/P ratio. I 
selected Ce values based on the head over the weir for both the natural and bypass channels for the 
four events used in the model evaluatkxis. I used the method described in "Handbook of Hydraulws" 
written by Brater and King (see Figures 2-5). 

For all seven discharge settings (four in the natural channel and three in the bypass channel) the 
discharge coeffkaent was 3.2. 
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